Math 1A

Midterm 2 Review

You should be able to find any derivative from this chapter.

3.1	$3-32$
3.2	$3-34$
3.3	$1-16$
3.4	$1-54$
3.5	$5-20,25-32,49-62$
3.6	$2-30,39-52$
3.11	$30-45$
3.REV	$1-50$

Knowing how to find derivatives is not enough, because once again, there will be very few questions which simply ask you to find a derivative. You should also be able to solve all the following types of problems.
[1] Estimate CSC 0.5 using a linear approximation chosen at an appropriate point.
[2] If $y=\frac{1}{x^{2}}$, find $d x, \Delta y$ and $d y$ if $x=2$ and $\Delta x=0.5$.
[3] Find $\frac{d^{3}}{d x^{3}} \sec x$. Simplify your answer.
[4] The position of an object at time t is given by the function $s(t)=\frac{2 t^{3}+4 t^{2}-3}{\sqrt{t}}$ for $t \geq 0.5$.
[a] Find the velocity of the object at time $t=1$.
[b] Find the acceleration function. Simplify and factor your answer.
[5] Find the equations of the tangent lines to the curve $y=1+x^{3}$ that are perpendicular to $x+12 y=1$.
[6] The line $y=3 x-4$ is tangent to a quadratic function at the point $(1,-1)$. Find the equation of the tangent line to the quadratic function at $(2,4)$.

If $f(x)=\frac{x^{3}}{1+x^{2}}$, find $f^{\prime \prime}(1)$.
[8] The following table gives values and derivatives of two functions at various inputs.

x	-3	-2	-1	0	1	2	3	4
$f(x)$	-2	0	2	4	-3	-1	1	3
$f^{\prime}(x)$	4	-1	-3	2	-4	3	-2	1
$g(x)$	-1	1	3	-3	4	-2	0	2
$g^{\prime}(x)$	2	4	-4	-1	3	1	-3	-2

[a] If $k(x)=x^{3} f(x)$, find the equation of the tangent line to $y=k(x)$ at $x=2$.
[b] If $j(x)=\frac{x^{2}}{f(x)}$, find the equation of the tangent line to $y=j(x)$ at $x=-1$.
[c] If $m(x)=\tan ^{-1}(g(x))$, find the equation of the tangent line to $y=m(x)$ at $x=-3$.
[d] If $n(x)=g(f(x))$, find the equation of the tangent line to $y=n(x)$ at $x=4$.
[9] If $h(x)=f(x) g(x)$, find formulae for $h^{\prime \prime}(x)$ and $h^{\prime \prime \prime}(x)$. Based on your answers, guess a formula for $h^{(4)}(x)$ (the fourth derivative of $h(x)$.
[10] Find all x-coordinates in the interval [0,2 2π] where the tangent line to $f(x)=4 x-3 \tan x$ is horizontal.
[11] If $f(x)=x g\left(x^{2}\right)$, find a formula for $f^{\prime \prime}(x)$. Your answer may involve g, g^{\prime} and/or $g^{\prime \prime}$.
[12] Find the equation of the tangent line to $\left(1+x^{2} y^{3}\right)^{5}=x^{4} e^{y}$ at $(-1,0)$.
[13] Show that $y=a x^{4}$ and $x^{2}+4 y^{2}=b$ are orthogonal trajectories. See section 3.5, questions 65-68.
If $y=(\sin x)^{\frac{1}{x}}$, find $\frac{d y}{d x}$.
[15] The limit $\lim _{h \rightarrow 0} \frac{(h-1) e^{1-h}+e}{h}$ is the derivative of some function $f(x)$ at some point $x=a$. Find the function, the point, and the value of the limit, by evaluating the corresponding derivative.

You must also know the following proofs.

Proofs derivatives of $\sin x, \cos x, \tan x, \csc x, \sec x$ and $\cot x$ using the definition of the derivative, without using the derivatives of any other trigonometric function you may use the limits $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$ and $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0$ without proving them derivatives of $\tan x, \csc x, \sec x$ and $\cot x$ using the quotient rule with the derivatives of $\sin x$ and $\cos x$ derivatives of $\sin ^{-1} x, \cos ^{-1} x, \tan ^{-1} x$, and $\ln x$ using implicit differentiation with the derivatives of $\sin x, \cos x, \tan x$ and e^{x}

